Language Stability and Stabilizability of
Discrete Event Dynamical Systems

by R. Kumar, V. Garg and S.I. Marcus

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 91-112r1

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
21 JUL 1992 2 REPORTTYPE 00-00-1992 to 00-00-1992
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
L anguage Stability and Stabilizability of Discrete Event Dynamical £b. GRANT NUMBER
Systems

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Systems Resear ch Center,College REPORT NUMBER

Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 38
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Language Stability and Stabilizability of Discrete
Event Dynamical Systems !

Ratnesh Kumar
Department of Electrical Engineering
University of Kentucky
Lexington, Kentucky 40506-0046

Vijay Garg
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712-1084

Steven I. Marcus
Department of Electrical Engineering and System Research Center
University of Maryland
College Park, Maryland 20742

July 21, 1992

IThis research was supported in part by the Center for Robotics and Manufacuring, University
of Kentucky, in part by the National Science Foundation under Grant NSFD-CDR-8803012 and
NSF-CCR-9110605, in part by the Air Force Office of Scientific Research (AFOSR) under Contract
F49620-92-J-0045, in part by a University Research Institute Grant and in part by a Bureau of
Engineering Research Grant.

Abstract

This paper studies the stability and stabilizability of Discrete Event Dynamical Systems
(DEDS’s) modeled by state machines. We define stability and stabilizability in terms of the
behavior of the DEDS’s, i.e. the language generated by the state machines (SM’s). This
generalizes earlier work where they were defined in terms of legal and illegal states rather
than strings. The notion of reversal of languages is used to obtain algorithms for determining
the stability and stabilizability of a given system. The notion of stability is then generalized
to define the stability of infinite or sequential behavior of a DEDS modeled by a Biichi
automaton. The relationship between the stability of finite and stability of infinite hehavior
is obtained and a test for stability of infinite behavior is obtained in terms of the test for
stability of finite behavior. We present an algorithm of linear complexity for computing the
regions of attraction, which is used for determining the stability and stabilizability of a given
system defined in terms of legal states. This algorithm is then used to obtain eflicient tests
for checking sufficient conditions for language stability and stabilizability.

Keywords: Discrete Event Dynamical Systems, Automata Theory, Supervisory Control,
Stability, Stabilizability

AMS(MOS) Subject Classification: 93

1 Introduction

Ramadge and Wonham in their work [21] on supervisory control of discrete event dyna-
mical systems (DEDS) have modeled a DEDS, also called a plant, by a State Machine (SM),
the event set of which is finite and is partitioned into sets of controllable and uncontrollable
events. The language generated by such a SM is used as a model to describe the behavior
of the plant at the logical level. The control task is to synthesize of a controller, also called
a supervisor, which disables some of the controllable events in the plant so that the closed
loop behavior equals some prespecified desired behavior, also called legal behavior. Supervi-
sors which do not prevent any uncontrollable events from occurring are are called complete.
Thus there may not always exist a complete supervisor so that the closed loop system has a
prespecified desired behavior. Attention is then restricted to designing a complete supervisor
that is minimally restrictive (21, 20, 10, 1, 11] so that the closed loop system can engage in
some maximal behavior and still maintain the prescribed behavioral constraint. Thus the
control objective is usually described as the synthesis of a minimally restrictive supervisor
so that the controlled system has a maximally permissive legal behavior.

Sometimes such a constraint on the system behavior leads to the design of a supervisor
which results in a very restrictive behavior [14, 15]. Recently there has been work {14, 15]
on posing a supervisory control problem that allows the system to engage in some illegal
behavior which can be tolerated. In this paper, we also allow the possibility of the system
behaving illegally. The supervisor is synthesized so that the behavior of the supervised
system is “asymptotically legal”. In other words, the system is initially allowed to make
illegal transitions but after a finite number of transitions the supervised system makes only
legal transitions. With the above motivation, we define the stability and stabilizability of
DEDS’s in terms of their legal behavior.

In [16, 18, 2, 4, 3] the notion of stability and stabilizability of DEDS’s has been presented
in terms of the legal and illegal states of the system. In [2, 3] a stable system is oune that
starts from any arbitrary initial state and after finitely many transitions goes to one of the
legal states and stays there; a stabilizable system is one for which there exists a supervisor
so that the supervised system is stable. In [18] a system is said to be stable if after starting
from any arbitrary initial state it visits the legal subset of states infinitely often; a system
that can be made stable in the above context by the synthesis of an appropriate supervisor
is called stabilizable. We define a system to be language-stable'. if its eventual behavior
remains confined to the legal behavior; if a supervisor exists such that the supervised system
is language-stable, then the system is called language-stabilizable. We show below that the
existence of an eventually reachable legal set of states implies the existence of an eventually

‘reachable legal behavior, whereas the converse is not always true. Thus the notion of stability
“presented here is finer than those in [18, 2, 3] in the sense that there need not exist any fixed
set of legal states. A state can eventually be reached by legal as well as illegal strings, so
none of the states can be predefined to be legal. In order to illustrate this point consider for

1'We use the term language-stability to emphasize the fact that it is defined in terms of legal behavior
rather than legal states in which case it may be called state-stability

example an elevator which moves between three floors - bottom, middle and top. Assume
that a passenger requests service at the top floor. We can view the top floor to be the legal
state, and require that the elevator should eventually reach it. However, a “finer” constraint
that the elevator should reach the top floor in no more than two moves (there are total three
floors) may be desired. In this case the top floor may be reached by legal as well as illegal
sequence of moves of the elevator. Thus in this example the stability based on legal states
cannot capture the desired behavior of the elevator.

In 18, 2, 3}, the supervisors considered for stabilizing a system are assumed to be of
static feedback type in which the next control action is determined by the current state of
the system. In general a supervisor can be of dynamic feedback type where the next control
action is determined not necessarily by the current state but by the “path” taken to reach the
current state. We refine the notion of stability and stabilizability by defining it in terms of
languages rather than states, and show that in some cases a static feedback type supervisor
cannot stabilize a system and a more general dynamic feedback type supervisor is needed
for stabilization. In [16], the stability of systems under partial observation is studied. In
this case, the supervisor is of dynamic feedback type; it can be represented as a cascade
of a dynamic state observer followed by a static feedback type controller. The supervisor
considered for eventually restrictable systems in [17] is also of dynamic feedback type.

We start with the description of DEDS’s and present some of the notions of stability
defined in terms of states. The computational complexity of the algorithms presented in
[2, 3] for determining the stability and stabilizability of DEDS’s based on computing the
regions of attraction is quadratic in the number of states of the system. We present an
algorithm that is linear in the number of states of the system and is thus computationally
more efficient. We then introduce the notion of stability in terms of languages and provide
algorithms for determining the stability and stabilizability of a given system by considering
an equivalent problem defined in terms of reversal of languages. We also discuss the com-
putational complexity of these algorithms. Later, we provide computationally more efficient
algorithms for testing the sufficiency of stability and stabilizability of systems based on our
algorithm for computing the regions of attraction. In all this, we assume that perfect ob-
servation of the system behavior is possible so that the control actions are determined on
the basis of observing the system evolution perfectly. We also introduce a weaker notion of
language stability that is preserved under union and provide a technique for constructing
the minimally restrictive stabilizing supervisor in this weaker sense of language stability.

The notion of language stability is then generalized to study the stability of sequen-
tial behaviors of DEDS’s modeled by Biichi automata. The notions of w-stability and w-
stabilizability are introduced in this context, and tests for verifying stability and stabiliza-
bility of sequential behavior are obtained by reducing the problem of testing them to the
problem of testing language stability. We introduce a equivalence relation on the space of

infinite strings and obtain a necessary condition of w-stability in terms of this equivalence
relation. 7

]

2 Notation and Terminology

A DEDS to be controlled, called a plant, is modeled as a deterministic trim [8] state
machine (SM) following the framework of [21]. Let the quintuple

pf (X, X, .20, X))

denote a SM representing a plant, where X denotes the state set; ¥ denotes the finite event
or alphabet set; a : ¥ x X — X denotes the partial state transition function; 2z € X
denotes the initial state; and X,, € X denotes the set of marked states. The transition
function «f:,) is extended to ¥* x X in the natural way, where ¥* denotes the set of all
finite sequences of events belonging to ¥. The notation € € ¥* is used to denote the empty
string. The behavior of P is described by the language L(P) C I~ that it generates and
L, (P) C L(P) that it marks or recognizes. Formally,

L(P)={s € T | a(s,z0)!}; Lm(P) = {s € L(P) | als,x0) € X},

where the notation “!” is used to denote “is defined”. By definition, L(P) is prefix closed

and also since P is trim, L, (P) = L(P) [8].
The event set is partitioned into ¥ = ¥, U ¥, the set of uncontrollable and controllable
events. A supervisor S for controlling a plant is another DEDS, also represented as a SM,

S d_j_f (va Ev !87 Yo, Ym)

S operates synchronously with P, thus allowing only the svnchronous transitions to occur
in the closed loop system described by the SM [10, 11]

PD»S cl_if (Z72777 207 Zm)v

where zo = (2o, y0); for s € £*, v : ¥* x Z — Z is defined as: (s, 20)) = (a{s,x0), 8(s,30))
if a(s,zo)! and 3(s,y0)!, undefined otherwise; Z = {z € X x Y | 3s € ©* s.t. y(s,20) = z};
and Z,, = ZN (X xYy,). Thus Z C X x Y is the set of states that are reachable from
the initial state zg, and Z, C Z is the set of those reachable states that have both their
“co-ordinates” marked.

The following states the control achieved by the synchronous operation of P and S.

Remark 2.1 [11, 10] Let L(POS) be the language generated and L, (POS) the language
marked by POS; then L(POS) = L(P) N L(Y), and L, (POS) = Ly(P) N Ly(S), where
L(S), Ln(S) denote the languages generated, recognized by S respectively.

Also, since S can disallow only the controllable events from occurring, L(P) N ¥ C
L(POS), where ¥ is the set of finite sequences of events belonging to &,

The supervisor as defined above represents a closed loop control policy. This differs
from open loop control policy in which control actions are all prespecified; in closed loop
control, control actions are determined by observing all or part of the history of the system
evolution. '

Definition 2.2 Let the map f : L(P) — 2% denote a control policy as described in [21], i.e.
for each string s € L(P) generated by the plant P, f(s) C ¥ is the set of events that are
not disabled by a supervisor. Then the control exercised by the synchronous operation of
a supervisor and the plant, as described above, defines the following control policy over the
set of strings generated by the plant:

R B

| undefined otherwise

where the string s € L(P).

Closed loop controllers can further be classified into static and dynamic control type.
Given a deterministic SM, V def (@,%,6,90,Qm), there is a natural equivalence relation Ry
[8, 6, 11, 10] induced by V on ¥*, which is defined by s = t(Rv) < (s, q0) = 6(t,¢o) (this
is meant to include the condition that é(s,qo) is undefined & 6(¢,qo) is undefined), where
s,t € ©*. Thus all those strings which upon execution result in the same state in V belong
to the same equivalence class. We use [s](Rv) to denote the equivalence class under the
equivalence relation Ry, containing the string s.

‘Definition 2.3 Consider the control policy f : L(P) — 2% defined by the synchronous
composition operator as described in Definition 2.2. We say that a closed loop control policy

is static if s = ¢(Rp) = f(s) = f(t) whenever both f(s), f(t) are defined.

In other words, in a static feedback type control, the same control action is applied after
the execution of all strings that lead to the same state in the plant. Next we show that if a
‘supervisor exercises a static closed loop control, then it can be represented as a SM having
structure similar to that of the plant.
Definition 2.4 Let Vi ¥ (Q1,%,61,490,, Qm,) and Va2 % (Q1, T, 62, 90,, @m,) be two SM’s.
Vi is said to be a subautomaton [5] of V; if there exists a one-to-one map h : Q; — Q5 such

that A(61(s,q0,)) = 82(s, qo,) for each s € L(V}).

Thus if V] is a subautomaton of V,, then L(V1) C L(V2). Note that if the map h in
Definition 2.3 is also onto, then V; and V; are structurally identical.

Proposition 2.5 [9] The following are true:

1. If S is a subautomaton of P, then the control policy f : L(P) — 2% defined by § is

static.

2. If f: L(P) — 2% is a static control policy, then there exists S which defines the same
control policy as f and is a subautomatan of P.

Definition 2.6 A closed loop control policy is said to be dynamic if it is not static.

)~ —4, >
Loy

L, (POS) = L,(5) = (ab)*
Figure 1: Diagram illustrating Example 2.7

Example 2.7 Consider for example a plant P, with language L(P) = (a + b)* defined over
the event set ¥ = {a, b} Assume that £, = X (see Figure 1; “(0” denotes the states,
an entering arrow “—” to “(0)” represents the initial state, and “()” denotes the marked
states). Then the language generated by the coupled system under a static feedback control
policy could be one of the following: L(POS) = (a + b)* or a* or b* or ¢ depending on
whether the events disabled in the only state of the system are §, {b}, {a} or {a,b}.

On the oth = hand, the language marked by the coupled system can be made to be any
sublanguage A C (a + b)* by using a dynamic feedback control policy. This can be done
because all the events are controllable [10, 11] (pick the supervisor S, so that L(S) = K). An
example for the case K = (ab)* is shown in Figure 1.

3 Stability: Region of Attraction

With the above introduction on our supervisory control model, we next consider the
stability issues for DEDS’s. First we discuss the definitions and results of some of the earlier
works, in which the stability is defined in terms of a set of legal states of the system. Later,
we present our own notions of stability defined in terms legal behavior of the system.

Consider a plant P def (X, Y, a, 20, Xi). Let X C X be the prescribed subset of states
or the legal states. The notions of strong and weak attraction [2, 3] are defined as follows:
A state z € X is said to be strongly attractable to X, if after starting from the state z, the
system always reaches a state in the set X after a finite number of transitions. The set of all
the strongly attractable states is called the region of strong attraction of X and is denoted
by Q(X). Formally, let for s € ©*, |s! denote the length of s, and for X’ C X, |X’| denote
the number of states in the set X'.

Definition 3.1 z € X is strongly attractable to X if for all s such that (s Jc) and |s| >
|X — X| there exists a prefix u, € £* of s with |u,| < |X — X| so that a(us,z) € X [2, 3].

Definition 3.2 A state # € X is said to be weakly attractable to X, if there exists a
supervisor S such that x is strongly attractable to X in the coupled system POS. The set

of all the weakly attractable states is called the region of weak attraction and is denoted by

A(X).

Ut

~

Clearly, Q(X) C A(X). If Q(X) = X, then P is said to be stable with respect to X and if
A(X) = X, then P is said to be stabilizable with respect to X. Thus in order to test whether
a given system is stable (stabilizable) with respect to a given set of legal states, one needs
to compute the region of strong (weak) attraction. The definitions of strongly and weakly
attractable states are the same as those of prestable and prestabilizable states, respectively

[18].

Remark 3.3 Algorithms for constructing the regions of strong and weak attraction are
presented in [18, 2, 3]. The complexity of these algorithms is quadratic in number of states
of the system. An algorithm of linear time complexity in number of states of the system for
constructing the regions of strong and weak attraction is presented in the Appendix A of
this paper. This algorithm is used later for arriving at computationally more efficient test
for determining a sufficient condition of stability and stabilizability introduced below.

4 Language-Stability

So far we have discussed stability of DEDS’s defined in terms of their legal states and
provided an efficient algorithm for testing it by computing the regions of attraction (refer
to Appendix A for the algorithm). Next we provide motivation for a more general notion of
stability which we call language-stability and discuss some of the issues related to stability
in this framework. -

In some cases, it might be desirable that the eventual behavior (rather than the whole
behavior) of the system be legal, so the whole behavior of the system need not be confined
to a legal language as in [21, 20]. Thus in these cases the control task can be formulated as
the synthesis of a supervisor such that the behavior of the supervised system is eventually
legal. This leads to the design of supervisors that are less restrictive and as a result, the
behavior of the supervised system is a larger language. Hence, we will formalize the notion of
eventual behavior of the systems and define stability and stabilizability of systems in terms
of their behavior. As discussed in the previous sections, the notions of stability defined in
terms of languages can also be viewed as a generalization to the ones defined in terms of

states [18, 16, 2, 4, 3].

Example 4.1 Consider the machine P shown in Figure 2. P can either be in “idle”, “wor-
king”, “broken” or “display” state. Assume that initially it is in the idle state and goes to
the working state when the action “start” is executed. While in the working state, P can
either “stop” and go back to the idle state or can “fail” and go to the broken state. In
_ the broken state it can execute either the action “repair” and go to the display state or the
action “replace” and get back to the initial idle state. While in the display state, the action
“reject” or “approve” can be executed, so the resulting state of P can either be broken (if
- reject is executed) or idle (if approve is executed).

Consider the above example for the stability analysis in the framework of {18, 16, 2, 4, 3].
The states idle and working are the “good” or legal states of P. The actions start, repair and

displa .
pray approve idle

Figure 2: Machine P of Example 4.1

replace are the controllable actions, whereas the actions stop, fail, reject and approve are the
uncontrollable actions. Clearly, P is not stable wwith respect to its legal states (once P executes
fail, it is not guaranteed to get back to the legal states;. To show that P is stadelizable: once
it executes fail and goes to the broken state, it must execute the controliable action replace
to go back to the legal state either permanently (as in [4, 2, 3]) or temporarily (as in [18]).
Suppose instead, it executes the controllable action repair and goes to the display state;
there it might not execute the uncontrollable action approve in which case it would remain
in the illegal state. Hence the only way P can be stabilized is by executing the action replace
after it executes fail. This however, may not be desired, for replacing (and not repairing) P
whenever it fails might be cost ineffective. Thus in this example, the framework of [18, 16. 3]
may be too restrictive for stabilizing the machine P.

We would like the desired behavior of P to be such that it allows P to execute the repair—
reject sequence for a finite number of times. In other words. the desired behavior of P is that
if it executes fail, it should execute replace or approve after a finite number of executions
of the repair-reject sequence: otherwise it should execute the start-stop sequence. The way
P is designed, after executing fail, it might never execute repface or approve and continue
executing the repair-reject sequence, in which case the desired behavior is not achieved. We
note that the desired behavior of P as described above cannot be achieved by use of a static
feedback controller.

Moreover, in the above example, P is allowed to execute “illegal” actions (the repair-
reject sequence) after it executes fail, provided it eventually executes one of the “legal”
actions (replace or approve). Thus the whole behavior of the system need not always be
confined to a legal language as in [21, 20]. With these motivations, the notions of stability
of systems is formally defined in terms of their legal behavior:

With this motivation, we formally define stability of systems in terms of their legal
behavior. For n € N, let ¥™ denote the set of strings, each of length n, of events belonging
to ¥. We use £V to denote |J,«y X" for each N € V.

-1

Definition 4.2 Let L, K C ¥* be two languages. L is said to be language stable ({-stable)
with respect to K if there exists N € A such that L C SV K.

Since LSV C 5N whenever N < N’ (N,N' € N), it follows that if L is {-stable with
respect to K, then there exists a smallest integer Ny € A such that L C LMK, Given a
string s € ¥, let u, € ¥* be the prefix of length n of s (n < |s]), and let v, € ¥* be such
that s = u,v,. We define a map II, : ¥* — £* in the following manner:

I, (s) = { v, forn < |s]

¢ otherwise

Thus the effect of the map II,(-) on a string s is to remove the initial n symbols of s.

It tollows from Defin: sn 4.2 that L C ¥* is £-stable with respect to K C ¥* if and only
if there exists N € N such that for every string s € L there exists a prefix u, € L* of s with
lus| < N such that I}, (s) € K. Thus L is (-stable with respect to K if after removing a
prefix of length at most N from a string in L, it matches some string in K. The language L
can be thought to be representing the plant behavior and the language K can be thought to
be representing the eventual legal behavior of plant. If L is not ¢-stable with respect to K,
then it is said o be £-stabilizable with respect to K if there exists a supervisor S such that
the closed loop behavior is £-stable with respect to K. Formally,

Definition 4.3 Consider L, K C ¥*. L is said to be £-stabilizable with respect to K if there

exists a nonempty controllable [21] sublanguage H C L such that H is ¢-stable with respect
to K.

Assume that T is recognized by a plant P, ie. L,,(P) = L. Let S be a supervisor such
that the language recognized by the closed loop system L,,(P0S) is £-stable and controllable
with respect to K; then clearly L is /-stabilizable with respect to K with H = L,,(POS). It
is know that the closed loop behavior L,,(POS) is controllable if and only if S is a complete?
supervisor [21, 11, 10]. Thus Definition 4.3 can equivalently be stated as: L is said to be
{-stabilizable with respect to K if there exists a complete supervisor S such that L,,(POS)
is {-stable with respect to K.

Proposition 4.4 If P & (X,%, o, 20, X,,,) is stable (stabilizable) with respect to X C X,
then L, (P) is £-stable (£-stabilizable) with respect to U, g Lm (P,), where L, (P, z) is the

language marked by P assuming the initial state to be z.

Proof: Assume that the SM, P < (X, .. 2o, X is stable with respect to the legal set

X CX. Let L =Ln(P),and K = U, g Ln(P,). Define N % | X = X|. We will show that
L C EsNK. Consider s € L. If |s| < N, then s € L5V hence s € BNVK. If |s| > N, then
there exists a prefix u, < s, |us] < N, such that a(us,:z:o) € X (follows from the fact that

2A supervisor S is said to be complete if for all s € ¥¥, 0, € T, 1 5 € L(PQS),so, € L(P) = so, €
L(POS).

T is strongly attractable to X). Thus I1,,/(s) € K (by definition of A'). Hence s € LSV A
which shows that L is {-stable with respect to K.)

Similarly, it can be shown that if P is stabilizable with respect to X, then L is ¢-
stabilizable with respect to K. O

Proposition 4.4 shows that stability (stabilizability) in terms of states in some sense
implies {-stability (¢-stabilizability). We show in the next example that the converse does
not necessarily hold, thus showing that the notion of f-stability (¢-stabilizability) is finer
than that of stability (stabilizability).

Example 4.5 Let ¥ = ¥, = {a,b,c,d}. Consider the languages L, K;(z > 1) C ¥ given
by: L = (ab)*cd* and and K; = d* + b(ab)'(ab)*cd*. Generators for L and K; = d* +
bab(ab)*cd* are shown in Figure 3. Letting N 4f 925 + 1, it can be easily verified that
L C SSNR,; for each ¢ > 1, and also that NV is the smallest integer for which the last
inclusion holds. Fix for example : = 1. We show that . C ©<3K. L consists of strings cd*
(no ab followed by cd*), abed* (one ab followed by cd*), and (ab)2?cd* (two or more ab followed
by ed*). First consider the strings in ¢d” € L. Then Ilj(ed*) = d* C K;. Next consider the
strings in abed* C L. Then I3(abed*) = d* C K,. Finally consider (ab)2%cd* C L. Then
I1,((ab)22cd?)= b(ab)Z'cd* = bab(ab)*cd” C K. Thus it follows that L C BS°K].

L = L(P) = (ab)cd* K1 = Ln(Vi) = d* + bab(ab)*ed”

Figure 3: Diagram illustrating Example 4.5 with ¢ =1

Since L is {-stable with respect to each A it follows that L is also £-stabilizable with
respect to each K.

Let P, V; be the minimal SM’s generating L, K; respectively. Then P, V; must have 3,2:+4
states respectively (refer to Figure 3 for ¢+ = 1). It can be easily seen that P is not stable
with respect to any of its subset of states. Since ¥, = ¥, P is not stabilizable with respect
to any of its subset of states either.

Example 4.6 Consider the languages L = (ac + b)a(a + b)" and K = (ab)* defined over
Y =%, = {a,b,c}. We will show that L is not ¢-stable with respect to K, i.e. there exists
no N € N such that L € VK. To prove this, we assume for contradiction that there
exists Ny € NV is such that L C SM [, Consider the string baa™ € L. Any substring of
it obtained by removing an initial finite segment of length less than Ny does not match any

9

string in K (a string in K contains the symbol b at the end, whereas the string baa™ ends
with the symbol a).

Q
I
o]

b Generator for K = (ab)*

Generator for L = (ac + b)a(a + b)* Generator for H = (ac + b)a(ab)*

Figure 4: Diagram illustrating Example 4.6

Consider a sublanguage H = (ac+b)a(ab)* C L as shown in Figure 4. Since ¥, = X, H is
controllable with respect to L. It can be easily seen that H = (ac + b)a(ab)* is {-stable with
respect to K = (ab)* (consider any string from H and remove the initial segment, either aca
or ba, whichever is appropriate; the resulting string belongs to K'). Thus L is {-stabilizable
to K. :

In this example, it is clear that a dynamic feedback type supervisor has been used to
{-stabilize the given language. Also, a static feedback type control cannot be used to stabilize
L = (ac+ b)a(a+ b)* with respect to K = (ab)*. This follows since any string in K contains
an equal number of a’s and b’s, and L cannot be restricted to a language H C L with all its
strings having an equal number of a’s and b’s at its end by using a static supervisor (refer
to Example 2.7). In [18, 2, 3], where stability is defined in terms of the legal states, the
supervisors considered for stabilizing DEDS’s are all assumed to be of static feedback type.
Thus a more general type of control is needed to ¢-stabilize the behavior of a given system,
which also shows that the notion of ¢-stability (¢-stabilizability) is a finer notion.

Example 4.7 Consider a system consisting of a single buffer of unbounded capacity. Only
two types of eventssarrival, denoted a, and departure, denoted b, occur in this system, i.e.
X = {a,b}. The behavior of this system can be described the language:

L={se S| #(a,s)>#(bs)},

where the symbol #(x,y) is used to denote the number of times the symbol z occurs in the
string y. We may be interested in determining whether there exists some number N € N
such that after execution of all strings of length larger than N, the buffer content is bounded

10

above by a fixed number Ny € N. The above problem can be posed as a ¢-stability problem
with the “eventually reachable” language K C ¥* defined as:

K = {s € X* | #(a.s) — #(b,s) < No}.

K corresponds to the content of the buffer being bounded above by Ng.

It is easy to see that L is not £-stable with respect to K, i.e. there does not exist any N
such that after execution of all strings of length larger than N, the buffer content is bounded
above by Ny. Note that in this example K C [, and if the arrival event a 1s controllable, then
L can be restricted to the language K by disabling @ whenever the buffer content becomes
‘equal to Ny. This proves that L is £-stabilizable with respect to K.

Next we present algorithms for testing ¢-stability and ¢-stabilizability of a language L with
respect to another language K.

4.1 Algorithms for testing /-stability and /-stabilizability

In order to test whether a language L is {-stable (¢-stabilizable) with respect to another
language K, we need to test whether there exists an integer N € A such that L C SSVK
(H C YVK, where H C L). This problem can equivalently be posed in terms of the
reversal [1] of languages that we define next.

Definition 4.8 Given a string s € Y¥*, its reversal s® € X¥*, is the string obtained by

reversing s. Given a language L C ¥, its reversal L® C ¥* is defined to be: LF f {s® ¢
Y*|s € L}.

Next we discuss some of the properties of the reversal operator. We use L, Ly, Ly to
denotes languages defined on X.

Lemma 4.9
1. Reversal preserves regularity, i.e. if L is regular, then so is L.
2. (LA)YR = L.

3. Reversal is monotone, i.e. if L; C Lo, then L? C Lg.

W

. (Lng)R = L?L{%

Proof: 1. The proof is based on constructing a FSM that recognizes L? using a FSM
‘realization for L, and can be found in [8].

2. Follows from the definition of the reversal of languages and the fact that for any string
s€Lx (sHE =s.

3. Pick s € L?; then s% € Ly. Since Ly C Ly, it follows that s% € Ly, i.e. (s®)” =3 € LE.

11

4. We first show that (L,L)® C LELE. Pick s € (L1L,)"; then s® € L1 Ly, i.e. there exist

u, € Ly and v, € Ly such that u,v, = sf. Hence s = (SR)R = (usvs)R = vfuf € L‘?Lfi.
Next we show that LELE C (L;Ly)R. Pick s € LELE; then there exist v, € L, and

us € Ly such that vfuf = 5. Hence s = (sB)F = ((vFul)F)E = (u,v,)F € (L1 L,)E. 0

Corollary 4.10 L C U5V K if and only if L? C KBSV where L, K CX* and N € V.,

Proof: Assume that L C LSV K then it follows from part 3 of Lemma 4.9 L® C (RSN K)E,
Since (USV)F = NSV it follows from part 4 of Lemma 4.9 that L® C KRT<N,

Assume next that L? C KEYSY; then from part 3 of Lemma 4.9 it follows that (LF)F C
(KRLSMYE Thus from part 4 of Lemma 4.9 we obtain (LF)E C DSV (KE)E Tt then follows
from part 2 of Lemma 4.9 that L C XSVK, a

Thus the problem of testing ¢-stability of a language L with respect to another language
K can be equivalently posed as that of determining an integer N € N, if it exists, such
that L® C K®XSN, Hence, given two languages L, K C ©*, we next analyze the problem of
determining an integer N € NV, if it exists such that LF C KRRV,

Let P ¥ (X, T, 0, 20, X;n) and V ¥ (Q, T, 6, g0, Q) be two SM’s such that L,,(P) = LR
and L,,(V) = K®. Assume further that P is trim [8] so that L(P) = L, (P) = LR, and V is
such that L(V) = X%, i.e. V is a SM that recognizes KT and has an additional dump state
in order to generate X*. Consider a slightly different synchronous composition of P and V,
denoted POV, given by the 3-tuple:

POV ¥ (R.T,p, 70, RBm)

where the state set R, the transition function p(-,-), and the initial state ry are defined as
in the definition of synchronous composition in section 2, and R, = {r € X, x Q | Is €
Y* s.t. p(s,r0) = r}. This is a slight variation to the earlier definition of marked states in
synchronous composition of two state machines. Note that R,, consists of those states in
Xm X @ that are reachable from the initial state rg, hence R,, C X,, X @. Also, note that
‘all transitions are defined in all states of V| i.e. given any event ¢ € ¥ and any state ¢ € @,

6(0,q)!. Hence for any event o € ¥ and state r = (z,q) € R, p(o,(z,q)) is defined if and
only if a(c, z) is defined.

Lemma 4.11 Let P and V be the two SM’s as defined above. Then L,,(PQ'V) = L,,(P),
and L(PO'V) = L(P). :

Proof: First we show that L, (P0O'V) C L,(P). Pick s € L,(PO'V); then p(s,ro) € Ry.
Since p(s,70) is defined if and only if a(s,zo) is defined, and R,. C X,. x Q, it follows
that a(s,z0) € Xn. Thus s € Ln(P). Next we show that L, (P) C L,(PO'V). Pick
s € Ln(P); then afs,z9) € Xpn. Again, since a(s,ro) is defined if and only if p(s,re) is
defined, p(s,r0) € X;n X Q. The state p(s,rg) is clearly a reachable state from rg, hence
p(s,70) € R, which shows that s € L,,(PO'V).

Since L(PO'V) = L(P) N L(V) = L(P) N £*=L(P), the other result follows. O

12

Given two languages L, K C ¥*, next we present a necessary and sufficient condition to
determine whether there exists an integer N € A such that L C ARESN in terms of the
graphical structure of SM’s recognizing the languages LT, K'F.

Consider R, the state set of PO’V. Let R* denote the set of all finite sequences of states
belonging to R. Consider p € R* such that p = (ryry...7;...7,) € R*, where r; € R for each
1 <i<nandneN. Then p is said to be a path starting at r; and ending at r, in POV,
if there exist a string s, € ¥*, s, = 0102...0;...0,-1, where 0; € L foreach | <1 <n—1,
such that p((o1...05-1),71) = r; for each 1 < ¢ < n. s, € ¥* as described above is called
the string corresponding to path p. Thus given a path p in POV there exists at least one
string s, € ¥* corresponding to p. A state r € R is said to be a path-state of the path p il
r = r; for some 1 <@ < n. pis said to be a loop-path if there exist 1,7 with 1 <v <3 < n
such that r; = r;; in which case the portion r;...r; of p is called the loop-portion of p. p is
said to be a loopfree-path if p is not a loop-path.

Theorem 4.12 Let LE, K# C ¥* be the languages recognized by the SM’s P, V respectively
as described above. Then there exists an integer N € A such that LR C KRSV if and only
if the following hold .in the SM PO'V:

C1 For each r,, € R,, and for every path p in PO’V that starts at ro and ends at r,, there
exists a path-state r = (z,q) € X x @ of p such that ¢ € Q.

C2 For each r = (z,¢) € X X @, and each r,, € R,,, if a path p in PO’V that starts at r
and ends at r,, has none of its path-states in X x @,, (other than the one at which it
starts), then p is a loop-free path.

Proof: Assume that there exists an integer N € N such that L C KBYSN: then we first
show that C1 holds.

Fix a path p in PO’V such that p starts at rq and ends at r,, € R,,. Then there exists a
string s, € L, (PO'V) such that p(s,,ro) = rp. Since L, (PO'V) = L, (P) = L% (Lemma
4.9 and definition of P), s, € L®. Thus it follows from the assumption that s, € KRNV,
i.e. there exist u,, € K*® and vs, € VN such that sp = Us,vs,. Consider the path-state
r = (z,q9) = p(us,,r0) of p. Since u,, € KR, the state ¢ reached by accepiing u,, in V
belongs to @, l.e. 1 = (2,q9) € X X Qm.

Next we show that C2 holds. Fix a path p in PO’V such that p starts at r = (z,¢q) €
X X Q,, and ends at r,, € R,, and none of the path-states of p other than the first one are
in X x Q. Assume for contradiction that C2 is false, i.e. p is a loop-path. Consider the
string s € L(PO'V) such that p(s,7o) = r = (2,¢). Since ¢ € @Qm, s € Ln(V) = K. Let
t, = upLpw, € L* be a string corresponding to the path p, where v, represents the string

“corresponding to the loop-portion of p. Then st, = suyv,w, € Ln,(PQ'V) = LE (since
p(sty,m0) = ry € Ry). Hence the string tu,(v,)¥*1w, € L®. Then there exists no prefix
s' € K of the string su,(v,)V 1w, such that iy (suy(v,) ¥ w,) € BNV, which contradicts
the fact that L® C KBE<N, This completes the proof of the fact that C1 and C2 are
necessary conditions for an integer N € A to exist such that L C AEESN| [t remains to
show that C1 and C2 are sufficient conditions also.

13

Assume then that C1 and C2 hold for SM PO'V. Since C2 holds, any path p in POV,
that starts at = (z,¢) € X x Q, and ends at r,, € R,, with none of its path-states (other
than the first one) in X x @y, is a loopfree-path. Let P denote the collection of all such paths

(paths that satisfy condition C2). Define N Lo max,ep |p|, where |p| denotes the length of
path p. Then we will show that L C KBEN. Note that since C2 holds, all the paths p € P
are loopfree-paths, hence the maximum in the definition of N exists. In order to show that
LR C KBYSN pick s € LE. Then s € L,,(PO'V). Let p(s,ro) = rp € Ry, Consider the
path p, in PO’V corresponding to string s. Since PO’V is deterministic, p; is unique. Also,
ps starts at ro and ends at r,, € Ry,. Hence by C1, there exists a path-state r = (z,q) of p;
such that 7 = (z,¢) € X X Q. Let ' be the last such path-state of p, i.e. 7' € X x @, and
“all the path-states of p, that follow r’ do not belong to X x Q... Let the portion of p, that
starts at r’ and ends at r,, be denoted by p'; then from C2 p’ is a loopfree-path, also p’ € P.
It follows from the definition of N that |p| < N. Let v’ € £* be the prefix of s such that
p(u',ro) = 1/, then v/ € K (since r' € X X Qn), and I, (s) € YN, Thus s € KRRV,
This completes the proof of Theorem 4.12. ‘ a

Remark 4.13 The conditions C1 and C2 can be tested in PO’V in the following manner:

1. Consider the state set R of PO’V and remove all the states r = (z,¢) € R (and the
transitions entering or leaving these states) for which ¢ € @. Then for C1 to hold,
there must not exist any path connecting ro to any r,, € Ry, in the machine obtained by
removing the above states. Thus C1 can be verified by performing a single reachability
test on the reduced machine as described above.

2. Next fix a state r = (z,¢) € R with ¢ € Q),, and remove from PO’V all the other states
r' = (2',¢') € R (and the transitions entering or leaving these states) having ¢’ € Q.
Then for C2 to hold for this state r, any path connecting r to any r,, € R,, in the
machine obtained by removing the above states must be acyclic. Repeat the above for
every state r” = (2", ¢") € R with ¢" € (), and test for acyclicity. Since for each such
state acyclicity can be tested by computing its reachability set, testing C2 requires at
most |PO'V| rechability tests to be performed, where |PO'V| denotes the number of
states in PO'V.

Thus it follows from above that testing C1 and C2 requires at most | PO'V|+1 reachability
tests to be performed. Since the reachability set can be computed in O(|PQ'V|) time, the
complexity of testing C1 and C2 is of order O(|PO'V|?). Let m,n € N be the number
of states in the minimal SM’s recognizing L, K respectively, then the number of states in
. SM’s P,V recognizing L%, KF respectively is 2™, 2" respectively (reversal operation requires
' nondeterministic to deterministic conversion of SM’s). Hence the computational complexity
of testing £-stability of L with respect to K is O(2¥m+).

Example 4.14 Consider the languages L, K1 C {a,b,¢,d}* as in Example 4.5: L = (ab)*ed*
and K = d* + bab(ab)*cd*. Recognizers for L and K are shown-in Figure 3. Then Lf =
d*c(ba)* and KF = d* + d*c(ba)*bab = d* + d*cbab(ab)*. Let P,V be state machines such

14

that L,(P) = L%, L,(V) = K, and L(P) = L.(P), L(V) = £* respectively as in Theorem
4.12. Construct PO’V as described above. Recognizers for P, V, PO’V are shown in Figure
5. in Figure 5 A state (z,q) in the state set R of PO’V is marked if and only if the state

for clarity, transitions leading to “dump” state 7 are not labeled
= LB = d*c(ba)* L(V) = KE = d* + d*cbab(ab)* L, (PO'V) = d*c(ba)*
Figure 5: Diagram illustrating Example 4.14

T € X,,. Since state 2 € X is the only state marked in P, the states (2,2),(2,4) and (2,6)
are the marked states in PO'V. We now check whether conditions C1 and C2 of Theorem
4.12 hold. Consider any path in PO’V starting from the initial state (1,1) and ending at
one of the marked states (2,2) or (2,4) or (2,6). Then this path obviously visits the state
(1,1). Since (1,1) € X X @y, (state 1 is marked in V), condition C1 holds. In order to show
that C2 holds consider any path in PO’V starting at the initial state (1,1) and ending at
one of the marked states either (2,2) or (2,4) or (2,6). If the path ends at (2,2), then the
last state (z, ¢) such that ¢ € Q,, visited along this path is (1,1). Consider the path segment
between (1,1) and (2,2); it is loop-free. If the path ends at (2,4), then the last state (z,q)
with ¢ € @, visited along this path is again (1,1), and again the path segment between
(1,1) and (2,4) is loop-free. Finally, if the path ends at (2,6), then the last state (r,q) with
q € Q. visited is (3,5), and the path segment between (3,5) and (2,6) is again loop-free.
Thus condition C2 also holds. It then follows from Theorem 4.12 that L is {-stable with
respect to K, as expected (refer to discussion in Example 4.5.

Corollary 4.15 Consider two regular languages L, K C ¥*. Let m,n € N be the number

of states in the minimal SM’s recognizing L, K respectively. L is {-stable with respect to A,
if and only if L C Z<2™" K.

Proof: For proving the “if” part we need to show that L C N2 | implies L is f-stable
with respect to K. This is trivially true: set N = 2™*" in the definition of ¢-stability. In
order to prove the “only if” part we need to show that if L /-stable with respect to K, then
L C 22" K. Since L is {-stable with respect to K, it follows from Corollary 4.10 that
there exists N € A such that L C KEYSN Let P,V be machines recognizing L. K
respectively as in Theorem 4.12. It then follows from Theorem 4.12 that N < |PO'V| (refer

13

to the second part of the proof of Theorem 4.12 where N is defined to be N ef maxep |pl;
since each p € P is loop-free, |p| < |PO'V|, hence N < |PO'V]). Since the number of
states in SM’s recognizing L, K is m,n respectively, the number of states in P,V is 2™,2"

respectively (reversal operation requires nondeterministic to deterministic conversion of SM’s
[1]). Thus it follows that N < |PO'V| = (2™)(2") = 2™*". O

Remark 4.16 Thus /-stability of a given language L with respect to another language K
can also be determined by testing whether L C N<2™" K where m,n € N are the numbers
of states present in SM’s recognizing L, A" respectively.

Next we consider the problem of testing (-stabilizability of a given language L C ¥*
with respect to another language K C ¥*. Let P,V be the SM’s recognizing language
L, K respectively. The supervisor that disables all the controllable transitions of P (treated
as a plant) is called the mazimally restrictive supervisor. .The behavior of P under the
maximally restrictive control is giv. y LN fote that since L™ is the closed loop
behavior under the control of the ximally . rictive supervisor, 'n any nonempty
controllable sublanguage H C L, L (1 ¥ C H. Also, note that L N~
(LATHE, NL(P)=LNEx

is controllable, for

173

Theorem 4.17 L is {-stabilizable with respect to K if and only if L N ¥¥ is nonempty and
{-stable with respect to K. '

Proof: Assume that L is f-stabilizable with respect to K. Then there exists N € A and a
nonempty controllable sublanguage H C L such that H C SV K. Note that LN XX C H
(by definition of maximally restrictive control). Hence L N ¥* C NSV K. Thus L N X¥ is
{-stable with respect to K.

Next assume that L N X% is nonempty and /{-stable with respect to K. Since L N X7 is
controllable, it follows that L is {-stabilizable with respect to K. a

Remark 4.18 Thus /-stabilizability of a given language L with respect to another language

K can be determined by testing whether L N ¥% is nonempty and ¢-stable with respect to
K.

As stated in Remark 4.13, the algorithm for testing f-stability of L with respect K is of
computational complexity that is exponential in the number of states present in SM’s recogni-
zing L and K. Hence so is the complexity of the algorithm that tests the {-stabilizability of L
with respect to K. Next we present a sufficient condition for ¢-stability of L with respect to K
that can be tested in polynomial time. Let P df (X,%, 0,29, X,,) and V def (Q,%,6,90,Qm)

“be two SM’s recognizing L and K respectively. Define the following subset of states Xg C X:
Xs={z € X | Ln(P,z) C K}
- where L,,(P,z) is the language recognized by P assuming its initial state to be z € X.

Proposition 4.19 Consider SM’s P,V as defined above. If zy € {)(Xg), then L is {-stable
with respect to K.

16

Proof: Define N & | X — Xs|; then to prove ¢-stability of L with respect to A', we need to
show that L C ESVK. Consider s € L. If |s| < N, then clearly s € YSVK. Solet s e L
be such that |s| > N. Then it follows from the definition of region of strong attraction that
there exists a prefix us € X*, lus| < N, of s such that a(u,,z¢) € Xs. Also, by the definition
of Xs, lj,,(s) € K, which shows that s € VA O
Thus if zg is strongly attractable to a state in Xg, then P after starting from z, reaches
a state in Xs in at most |X — Xg| transitions, and then onwards follows a string in K. The
following algorithm checks the sufficient condition of ¢-stability of Proposition 4.19:

Algorithm 4.20
1. Determine the subset of states Xg C X defined above.
2. Compute Q(Xs) using Algorithm A.1.
3. If zg € Q(X5s), then L is -stable with respect to K.

Let P,V be the minimal SM’s recognizing L, K respectively and let m,n € N be the
number of states in P,V respectively. Then step 1 of Algorithm 4.20 can be determined in
O(m?n) time, and step 2 and 3 can both be determined in O(m) time (vefer to Theorem A.2).
Hence the computational complexity of Algorithm 4.20 is O(m?%n) which is polynomial in
m,n. Note that Algorithm 4.20 tests only for the sufficiency condition of /-stability. Hence
if the condition in step 3 of Algorithm 4.20 is not satisfied, ¢-stability of L with respect to K
is determined by testing conditions C1 and C2 of Theorem 4.12 as described in Remark 4.13.
Next we present a sufficient condition for {-stabilizability of L with respect to A", which can
also be tested in polynomial time. ‘

Proposition 4.21 Consider the SM’s P, V. Let Xj iz e X | Ln(Pz)NE: CKY. I
zo € A(Xg), then L is {-stabilizable with respect to K.

Proof: Similar to the proof of Proposition 4.19. .-
The following algorithm can be used for testing the sufficient condition of ¢-stabilizability
of Proposition 4.21:

Algorithm 4.22
1. Compute X5 C X.
2. Compute A(X%) using the modification to Algorithm A.l described in Remark A.3.
3. If 29 € A(X%), then L is ¢-stabilizable with respect to A"

The computational complexity of Algorithm 4.22 is also O(m?n), where m, n is the num-
ber of states in P,V respectively.

17

5 Weakly Stabilizing Supervisors

In the previous section we showed that given a plant P with physical behavior L C ¥*
and desired eventual behavior K C ¥*, it can be verified whether or not L is ¢-stable or ¢-
stabilizable with respect to K. In case L is {-stable with respect to K, the eventual behavior
of P is contained in K'; hence no supervisor is needed. If L is not ¢-stable but is Z-stabilizable
with respect to K, then a supervisor must be constructed to insure that the eventual closed
loop behavior of the system is a sublanguage of K. The ¢-stabilizability of L guarantees the
existence of a stabilizing supervisor, but a minimally restrictive stabilizing supervisor need
not in general exist. This is evident from the following proposition:

Proposition 5.1 /-stability is not preserved under union.

Proof: We show by the following example that £-stabilizability is not preserved under union.
Let ¥ = X, = {a,b}, L = a*b* denote the plant behavior and K = b* denote the desired
eventual behavior. Then there does not exist any integer N € A such that L C LV K, i.e.
L is not ¢-stable with respect to K.

Next consider the following family of sublanguages {L;}:ex of L with L; = a'b* for each
i € N. Then i is clear that for each i € N, L; is controllable (since ¥, = ¥) and also
{-stable (since L; € XK sublanguage of L. But Uiew Li = L is not {-stable with respect
to K; thus showing that ¢-stability is not preserved under union. a

The implication of Proposition 5.1 is that if the plant behavior L is not {-stable with res-
pect to the desired eventual behavior K, then the minimally restrictive stabilizing supervisor,
which will restrict the plant behavior to the supremal ¢-stable sublanguage of L, cannot in
general be constructed. Next we define a weaker notion of language stability that we call
weak (-stability which is preserved under union so that the minimally restrictive stabilizing
supervisor can be constructed.

Definition 5.2 A language L C ¥* is said to be weakly {-stable with respect to another
language K C ¥* if L € ¥*K. If there exists a nonempty controllable sublanguage H C L
such that H is weakly f-stable with respect to K, then L is said to be weakly £-stabilizable
with respect to K.

Thus if L is weakly {-stable with respect to K, then every string in L after removing a 7
prefix from it, matches some string in K. Notice that here no uniform bound on the size of
prefix to be removed from a string in I is assumed.

Remark 5.3 Since XV C ¥ for any N € N, it follows that {-stability implies weak ¢-
stability. However, the converse does not hold in general. Consider for example the languages
L = a*b* and K = b* defined over the event set ¥ = {a,b}. Then as stated in the proof of

Proposition 5.1, L is not ¢-stable with respect to K. But clearly L is weakly /-stable w1th
respect to K, for a*b* C Yrb*.

The following result analogous to that stated in Theorem 4.17 holds also for weak ¢-
stabilizability.

18

Theorem 5.4 L is weakly ¢-stabilizable with respect to A" if and only if LN YY is nonempty
and weakly /-stable respect to K.

Proof: Similar to the proof of Theorem 4.17. O

Next we discuss how to verify weak ¢-stability and weak ¢-stabilizability of a given plant
behavior with respect to its desired eventual behavior. Let P o (X, X, 0,20, X0),V &
(@,X,6, go, @m) be the minimal SM’s recognizing the languages L, K respectively. Assuming
that the languages L, K are regular, let m,n be the number of states in P,V respectively. A
SM that recognizes ¥*K is constructed by first adding the self-loop corresponding to ¥* at
the initial state of V' and then converting it to a deterministic SM. Let this SM be denoted
by V'; then the number of states in V' is 2".

Remark 5.5 The weak ¢-stability of L with respect to K can be verified by determining
whether L,,(P) € L,(V’). Since the number of states in P,V’ is m,2" respectively, the
computational complexity of verifying weak (-stability of L with respect to K is O(m2").
It also follows, in view of Theorem 5.4, that the computational complexity of testing weak
/-stabilizability of L with respect to K is again ({m?2").

Since /-stability (¢-stabilizability) implies weak £-stability (weak ¢-stabilizability), the
condition in Proposition 4.19 (Proposition 4.21) is sufficient for weak ¢-stability (weak /-
stabilizability). Thus Algorithm 4.20 (Algorithm 4.22) can be employed to test this sufficient
condition for weak ¢-stability (weak {-stabilizability), the computational complexity of which
is polynomial in m,n.

Next we prove that weak £-stability is preserved under union, i.e. the supremal weakly
£-stable sublanguage of a given language exists.

Proposition 5.6 The supremal weakly /-stable sublanguage of a given language exists and
is unique.

Proof: Let L, K denote the plant, desired eventual behavior respectively. Let A be an
indexing set such that the family of weakly (-stable sublanguages of L is given by {L1}xea,
i.e. Ly is weakly ¢-stable sublanguage of L for each A € A. Such a family is nonempty
because @ is weakly ¢-stable sublanguage of L. Consider the language H o Uxea Ly then
clearly H C L and H is weakly {-stable. The last assertion follows from the fact that
Ly C ¥*K for each A € A which implies that Uyea Ln = H € XK. This completes the
proof of Proposition 5.6. 0O

Corollary 5.7 The supremal controllable and weakly ¢-stable sublanguage of a given lan-
guage exists and is unique.

Proof: Follows from Proposition 5.6 and the fact that controllability is preserved under
union [21, 20]. : , O

We proved the existence and uniqueness of the supremal controllable and weakly ¢-stable
sublanguage of a given language. Next we present a closed form expression for it. We use the

notation H' to denote the supremal controllable sublanguage of a given language H C ©*
[20, 1, 10].

19

Theorem 5.8 Let L, K C ¥* denote the plant, desired eventual behavior respectively. Then
the supremal controllable and weakly ¢-stable sublanguage of L is given by (L.N L*K)T.

Proof: Let H C ¥* denote the supremal controllable and weakly ¢-stable sublanguage of L
with respect to K. Then we need to show that H = (L N ¥*K).

First we show that (L N £*K)! C H. Since H is the supremal controllable and weakly
{-stable sublanguage of L, it suffices to show that (L N X*K)! is a controllable and weakly
{-stable sublanguage of L. By its definition, (L N £*K)! is a controllable sublanguage of L.
Also, since (LN Y*K) € LNY*K C YK, it follows that (L N T*K)! is weakly £-stable
with respect to K. Thus (LN Y*K)! is a controllable and weakly /-stable sublanguage of L.

Next we prove that H C (LNY*K)'. Since H is weakly ¢-stable, it follows that H C ¥*K;
also, H C L, hence H C L N ¥*K. Note that H is controllable also. Thus H is controllable
and is contained in L N X*K. Since (L N ¥*K)! is the supremal controllable sublanguage
contained in L N £*K, it follows that H C (L N £*K)'. o

Thus if L is not ¢-stable with respect to K, but is weakly {-stabilizable with respect to K,
then a minimally restrictive stabilizing supervisor can be constructed so that the behavior
of the closed loop system is given by (L N £*K)!. Note that the result of Theorem 5.8 is
not surprising, as we are interested in finding the supremal sublanguage H C L such that
H is weakly stable, i.e. H C ¥*K and H is controllable. Since H C L and H C Y*K,
it follows that H C L N Y*K. Thus we are interested in finding the supremal controllable
sublanguage H C L N Y*K, which obviously equals (L N X*K)!. This, however, offers an
alternative interpretation of minimally restrictive weakly stabilizing supervisors: problem
of finding the minimally restrictive weakly stabilizing supervisor for a plant with behavior
L and desired eventual behavior K is equivalent to the problem of finding the minimally
restrictive supervisor for the same plant with desired behavior L N ©*K. Hence techniques
developed in [21, 20, 1, 11] etc. can be used to solve the problem.

6 Stability of Sequential Behavior

So far we have discussed the stability of the finite behavior of a DEDS. We will show
how the notions of l-stability and {-stabilizability defined above can be easily generalized
to describe the stability of infinite or sequential behaviors of DEDS’s. In this section, we
introduce the notion of w-stability for formally describing the the notion of eventual sequential
behavior. ‘

In [19, 22, 13, 12, 23] the supervisory control problem for controlling the sequential be-
havior of a DEDS is studied, and conditions under which a supervisor can be constructed
so that the sequential behavior of the controlled system is equal to some desired sequen-
tial behavior are obtained. As discussed above, such a control problem formulation may
lead to synthesis of a very restrictive supervisor. In some cases, it might suffice to design
a supervisor which would ensure that the sequential behavior of the controlled system is
eventually contained in the desired sequential behavior. So we introduce the notion of the
desired eventual sequential behavior and obtain conditions under which the plant’s sequen-

20

tial behavior is eventually contained in this sequential behavior. We follow the framework
of [19] for addressing the supervisory control problem of sequential behavior.

Let ¥¢ denote the set of all infinite strings of events belonging to ¥. An infinite or
w-language is a sublanguage of £“. Let ¢® € ©* denote the prefix of size n of the infinite
string e € ¥¥. A suitable metric can be defined on the space £* [7]. Given two infinite
strings e, e; € X, the distance d(eq, €5) between the two infinite strings is defined to be:

d(61,62) def { 1/(n + 1) if 6? = eg and e;H‘l ?é 6721+1 (TL e ,/\/f)

o if e1 = ey

Given a language L C Y*, its limit, denoted as L, is the w-language defined as:
L= ¥ {e e ©¥ | e € L for infinitely many n € N}

We will use t < s to denote that ¢ € £* is a prefix of s € ¥* U X¥. If ¢ is a proper prefix of
s, then it is written as ¢ < s. Given an infinite sequence of strings s; < $3 < ... < 8, < ...
with s, € ¥* for each n, there exists a unique infinite string e € ©* such that s, < e for each
n. In this case, the infinite string e is also written as e = lim,_, $,. Given an w-language
L C X%, its prefir, denoted by prL, is the language:

prL¥{se X |3ecLst. s<e)

Note that pr£ = prL, where £ denotes the topological closure® of £ in the metric space
(£¢,d) [7]. It can be proved [7] that for a w-language £ C ¥,

(prL)> =L
With the above preliminary notions we can address the issue of stability of the infinite
behavior of a given DEDS. Let P = (X, X, o, 20, X,,) denote the plant. Then as defined
above, L,,(P), L(P) C ¥* denote its (finite) marked, generated languages respectively. The
w-language generated by P, denoted by L£L{P), is defined to be:

L(P) Y {e € (L(P))* | 3 infinitely many n € N s.t. a(e". o) € X} = (Lm(P))™

Note that the w-language L£(P) generated by P as defined above is also the w-language
generated by P viewed as a Biichi automaton [7]. P is said to nonblocking if prL(P) = L(P).
Let S = (Y, %, B, yo, Y) denote the supervisor that controls P by synchronization as defined

above. Then the w-language generated by the closed loop system POS is defined to be:
L(POS) ¥ (L(POS))™ N L(P)

Let K C L(P) be the desired w-language. It is shown in [19] that a complete, nonblocking
supervisor exists for achieving the desired sequential behavior if and only if K is w-controllable
with respect to P:

3The notation £ is used to denote topological closure whenever £ C £, and the notation Z is used to
denote the prefix closure whenever L C ¥*.

21

Definition 6.1 An w-language K C X% is said to be w-controllable with respect to the plant
P if prK is controllable with respect to P, and K is topologically closed with respect to L(P);
1. e.

1. pr(K)X, N L(P) C prK, and
2. KNL(P)=K.

It is further shown in [19] that if K is not w-controllable, but is topologically closed with
respect to L(P), then the supremal w-controllable sublanguage, denoted by K, of K exists*.
Thus the construction of the minimally restrictive supervisor is possible. A closed form
expression for the supremal w-controllable sublanguage, as well as an efficient algorithm for
computing it, is presented in [13, 12].

Next, let K C X“ represent the desired eventual sequential behavior of the plant P =
(X, %, a,20, X;n). The notion of w-stability is defined as follows:

Definition 6.2 The plant sequential behavior £(P) is said to be w-stable with respect to
the desired eventual sequential behavior K if there exists an integer N &€ A such that
L(P) C YSNK. L(P) is said to be w-stabilizable with respect to K if there exists a nonempty
w-controllable sublanguage H C L£(P) such that H is w-stable with respect to K.

Let e € ¥¥ be » infinite string and for each n € NV, let f, € X be such that e = " f,.
Then the projection operator II,, : ¥ — £¢ (n € N) is defined in the following manner:

Hn(e) = fn

In other words, given a infinite string e € £, its projection II,(e) is obtained by deleting its
prefix of size n from it. Thus if £(P) is w-stable with respect to K, then for each e € L(P)
there exists an integer n. < N such that II,.(e) € K. In other words, each infinite string
in L£(P) after removing a prefix of size at most N matches a infinite string in K. The
w-language K thus can be thought of to be representing the desired eventual sequential
behavior. If L(P) is not w-stable but w-stabilizable with respect to K, then there exists a
nonempty w-controllable sublanguage H C L(P) which is w-stable with respect to K also.
Thus a nonblocking and complete [19] supervisor, that can restrict the sequential beliavior
of the plant to H which “stabilizes” to the desired eventual sequential behavior K. can be
constructed.

6.1 Tests for w-stability and w-stabilizability

In this subsection we show that under certain assumptions w-stability can be tested by
performing the test for {-stability. First we define the notion of complete languages which is
useful in the context of studying the stability of infinite behaviors.

4The notation KT is used to denote the supremal w-controllable sublanguage of K C ¥*, and the notation
K7 is used to denote the supremal controllable sublanguage of K C ¥*.

22

Definition 6.3 Consider a language L C ©*. A string s € L is said to have an extension in
L if there exists a t € L such that s < t. L is said to be complete® if for every string s € L,
there exists an extension in L.

Note that a language is complete if and only if a trim SM recognizing it is live (has at
least one transition defined at each of its states) [13]. First we show that ¢-stability of a
given language with respect to another implies w-stability of the limit of the given language
with respect to the limit of the other.

Theorem 6.4 Consider L, K C ¥*. If L is {-stable with respect to A, then L™ is w-stable
with respect to K.

We prove the following lemma before proving the result of Theorem 6.4.
Lemma 6.5 Consider L C ¥*. Then for any N € NV, (ZVL)> = NN oo

Proof: First we show that SSVL® C (ESVNL)®, Pick e € YSVL>®, Then e can be written
as e = e"f, where n < N and f € L*. Thus there exist infinitely many m € A such that
f™ e L. Then the strings e* f™ € SV L for each m € M. Hence lim,, ., €"f™ € (ESV L),
Also, since e"f! < e"f2 < ... < e*f™ < ... < e, it follows that lim,, .., €"f™ = e: which
shows that e € (XSVL)*>.

Next we show that (SN L)> C NN [Pick e € (XSV L), Then there exist infinitely
many n € N such that e® € YSVL. Thus each e can be written as e” = u,v,, where
u, € U5V and v, € L. Since the set X<V is finite, it follows that there exists at least one
integer ng € N such that u,, = u, for infinitely many n. Let {ni}iecar be a subsequence

such that u,, = Up, = ... = Uy, = ... = Uy,. Then e™ = uyv,, for each k € N. Hence
e = limp_co €™ = Uy, liMy_ o v, . Since u,, € U=V and v,, € L for each k € N, it follows
that e € TSN [, 0

Proof (of Theorem 6.4): Since L is ¢-stable with respect to K, there exists an integer
N € N such that L C SN K. Hence, by taking limits on both sides of the last inclusion, we
obtain L*® C (SN K>, It then follows from Lemma 6.5 that L™ C YNV e which shows
that L* is w-stable with respect to K. a

Example 6.6 Consider languages L, K; of Example 4.5. Then L™ = ({ab)*cd*)* = (ab)*cd”
and (K1) = (& + bab(ab)*ed*)* = d* + bab(ab)*cd”. Using arguments similar to those in
Example 4.5 it can be easily verified that L>° C Y<3(K;)*®. This shows as expected from
the result of Theorem 6.4 that L> is w-stable with respect to (K)*°. However, the converse
of Theorem 6.4 does not hold in general. Consider for example languages L, K C {a, b}
L = (ab)* and K = (ba)*tar. Then L*® = (ab)¥ and K = (ba)” = (ab)*. Since (ab)” =
- a(ba)¥, it is obvious that L™ is w-stable with respect to K™ (L> = aK*). It can also be
easily checked that L is not /-stable with respect to A: a string in L ends with the symbol
b, whereas a string in K ends with the symbol a. Thus given any string in L, no suffix of it
matches any string in K.

5Completeness is also defined to be a property of supervisors; here we define it to be a property of
languages. The two definitions are unrelated and not to be confused with.

23

Next we prove that under certain assumptions the converse of Theorem 6.4 holds.

Theorem 6.7 Consider L, K C X*. Assume that I is complete and K is prefix closed.
Then w-stability of L> with respect to K implies ¢-stability of L with respect to K.

Before proving the result of Theorem 6.7, we prove the following lemma.

Lemma 6.8 Consider two languages Ly, L, C X*. Assume that L; is complete and L; is
closed. Then (L;)* C (L2)* if and only if L; C L,.

Proof: It is clear that Ly € L, implies L{° C L3°. Hence it suffices to show that if
(L) C (Ly)™, then Ly C L. Pick s € Ly. Since Ly is complete, there exists a sequence
of strings 51 < 83 < ... < 8, < ... such that s, € L; for each n € N and s < s;. Let
e = limp_ 0o Sn; then e € (L;)*°. Tt then follows from the assumption that e € (L3)*. Hence
there exist infinitely many n € A such that e” € Ly. Pick m € NV such that s < e™. Since

™ ¢ Ly and L, is closed, it follows that s € L,. a
Proof (of Theorem 6. 7) Assume that L* is w-stable with respect to K. ‘Then there
exists an integer N € N such that L® C U<V K. Thus it follows from Lemma 6.5 that
L>® C (2SVK)*. Note that since TV is closed, and prefix closure is preserved under
‘concatenation of languages TSV K is a closed language (by assumption K is closed). Since
L is complete (by assumption) and XSV K is closed, we obtain from Lemma 6.8 that 1> C

(ESVK) if and only if L C SSVK, 0

Example 6.9 Consider the languages L = (ab)* and K = (ba)* of Example 6.6. It was
noted in Example 6.6 that L* is w-stable with respect to K, however, L is not /-stable
-with respect to K. The reason is that although L is a complete language, K is not prefix
closed. Let us replace K by its prefix closure, i.e. consider K’ = K = (ba)* = (ba)* + b(ab)*.
Then clearly L is {-stable with respect to K’ (L = (ab)* = ab+ ab(ab)* C L2K').

The results of Theorem 6.4 and Theorem 6.7 can be combined to arrive at a test for
w-stability based on the test for ¢-stability (Theorem 4.12).

Theorem 6.10 Let L(P) = (L,(P))* C X¥ denote the plant w-behavior and £ C X¢
denote the desired eventual behavior. If P is live and K is topologically closed, then L£(P)
is w-stable with respect to K if and only if L,,(P) is £-stabe with respect to prk.

Proof: Since P is live, L,(P) is complete. Also, since K is topologically closed, K = K =
(priC)>®. Thus L(P) is limit of the complete language L,,(P) and K is limit of the prefix
closed language prK. Hence it follows from Theorem 6.4 and Theorem 6.7 that L(P) is
" w-stable with respect to K if and only if L,,(P) is {-stable with respect to prk. O

Next we relate the notion of w- stablhzablhty to that of w-stability through the following
theorem.

Theorem 6.11 ﬁ(P) is w-stabilizable with respect to K if and only if L(P)NX¥ is nonempty
and w-stable with respect to K, where £¢ = (Lx)*®

24

Proof: We first show that £(p) N X¥ is the infimal w-controllable sublanguage of L(P),
i.e. it is the sequential behavior of P under the control of maximally restrictive complete
and nonblocking supervisor [19]. Consider the supervisor that disables all the controllable
events in P. Then the behavior of the closed loop system under this control law is given
by L(P) N X. Hence the sequential behavior of the closed loop system is given by (L{F) N
YR NL(P) = (L(P)* N (X)) NL(P) = L(P)N XY, where the first equality follows from
the fact that L(P),Y* are both closed languages and the second equality follows from the
fact that £L(P) C (L(P))*> and (X})™ = ¥¥. Note that the supervisor that disables all the
controllable transitions in P is complete (it never disables any uncontrollable transition) and
nonblocking (since pr(L(P) N X¥) = L(P) N 5*). Hence L(P) N X is w-controllable [19].
Since it is the sequential behavior under the maximally restrictive complete and nonblocking
control law, if H C L(P) is any w-controllable sublanguage of L({P), then L(P)N XY C H.

Assume then that £(P) is w-stabilizable with respect to K. Then by the definition of w-
stabilizability, there exists a nonempty w-controllable sublanguage H C £(P) and an integer
N € N such that H € ZVK. Since L(P) N ¥ C H, it follows that L(P)N ¥ C YSNK;
which shows that £(P) N Y¥ is w-stable with respect to K.

Assume next that £L(P) N X¥ is nonempty and w-stable with respect to K. Since L(P)N
X9 C L(P) ai. is w-controllable (proved above), it follows that £({P) is w-stabilizable with

respect to K. O

Remark 6.12 Note that L(P)NXY = (L, (P))®N(LX5)® = (L (P)N L), where the last
equality follows from the fact that X7 is prefix closed. Thus, if P is live and K is topologically
closed, then from Theorem 6.10 and Theorem 4.17 it follows that the w-stabilizability of £(P)
with respect to K is equivalent to £-stabilizability of L,,(P) with respect to prk.

Remark 6.13 A necessary condition for w-stability is obtained using an equivalence relation
on the space X introduced in Appendix B. It is also shown in Appendix B that if a weaker
definition of w-stability is used the necessary condition obtained in terms of the equivalence
relation is also a sufficient condition.

7 Conclusion

In this paper, we have introduced the notions of stability and stabilizability of DEDS’s
in terms of their behavior. In many situations, since the behavior rather than the states of
the system is observed directly, it is more natural to study the stability of systems in terms
of their behavior. Also, in some cases, it might be desired that the eventual (rather than
the whole) behavior of the system be legal, so it is necessary to define formally the notion
of language stability. Earlier works concerning stability of DEDS’s [18, 2, 3] are all based in
terms of the states of the systems and can be viewed as a special case of the work presented
here (refer to Proposition 4.4). The earlier works [18, 2, 3] on stability in terms of states
assume the control to be of static feedback type; however, more general supervisors that
exercise dynamic feedback have been used here for making the systems ¢-stable.

o
faby

We have shown that the problem of determining ¢-stability (£-stabilizability) of a given
language with respect to another language is equivalent to another problem posed in terms
of the reversal of languages (refer to Corollary 4.10) and have provided a solution to this
equivalent problem (refer to Theorem 4.12 and Theorem 4.17). We have also provided an
upper bound to the value of the integer N in the definition of {-stability ({-stabilizability)
using the solution to the equivalent problem (refer to Corollary 4.10). Next we have presented
a weaker notion of language stability in which no uniform upper bound on the length of the
prefix to be removed from a string in a language (for it to ¢-stable with respect to another
language) exists and have provided the construction of the minimally restrictive supervisor
[10, 21, 20, 11] to {-stabilize a given language in this weaker sense of language stability.

The notion of £-stability and ¢-stabilizability is then generalized to describe the notion of
stability of sequential behavior of DEDS’s and the notions of w-stability and w-stabilizability
is introduced in this context. We have introduced an equivalence relation on the space of
infinite strings and have obtained a necessary condition of w-stability in terms of this relation.
A necessary and sufficient condition for w-stability is obtained in terms of £-stability, which
is used to arrive at tests for w-stability and w-stabilizability. ‘

References

[1] R. D. Bra i, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham. For-
mulas for calculating supremal and normal sublanguages. Systems and Control Letters,
15(8):111-117, 1999,

[2] Y. Brave and M. Heymann. On stabilization of discrete event processes. In [EEFE
Proceedings of 28th Conference on Decision and Control, pages 2737-2742, Tampa, FL,
December 1989. :

[3] Y. Brave and M. Heymann. On stabilization of discrete event processes. Technical
report, Department of EE, Technion-Israel Institute of Technology, Hafia 32000, Israel,
1989.

[4] Y. Brave and M. Heymann. On optimal attraction in discrete event processes. Technical
Report CIS Report 9019, Department of CS, Technion-Israel Institute of Technology,
Hafia 32000, Israel, 1990.

[5] H. Cho and S. I. Marcus. On supremal languages of class of sublanguages that arise in

supervisor synthesis problems with partial observations. Mathematics of Control Signals
and Systems, 2:47-69, 1989.

[6] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisor
synthesis problems with partial observations. Mathematical Systems Theory, 22:177-
211, 1989.

26

[7] S. Eilenberg. Automata, Languages, and Machines: Volume A. Academic Press, New

York, NY, 1974.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979,

9] R. Kumar. Supervisory Synthesis Techniques for Discrete Event Dynamical Systems:
Transition Model Based Approach. PhD thesis, Department of ECE, University of Texas
at Austin, 1991.

[10] R. Kumar, V. K. Garg, and S. 1. Marcus. Supervisory control of discrete event sy-
stems: supremal controllable and observable languages. In Proceedings of 1989 Allerton
Conference, pages 501-510, Allerton, IL, September 1989.

[11] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete
event dynamical systems. Systems and Control Letters, 17(3):157-168, 1991.

[12] R. Kumar, V. K. Garg, and S. I. Marcus. On w-controllability and w-normality of deds.
In Proceedings of 1991 ACC, pages 2905-2910, Boston, MA, June 1991.

[13] R. Kumar, V. K. Garg, and S. I. Marcus. On supervisory control of sequential behaviors.
IEEE Transactions on Automatic Control, 1991. To appear.

[14] S. Lafortune and E. Chen. On the infimal closed and controllable superlanguage of a
given language. IEEE Transactions on Automatic Control, 35(4):398-404, 1990.

[15] S. Lafortune and F. Lin. On tolerable and desirable beliaviors in supervisory control
of discrete event systems. Discrete Event Dynamical System: Theory and Application,
(1):61-92, 1991.

[16] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. OQutput stabilizability of discrete
event dynamical systems. In IEEE Proceedings of 28th Conference on Decision and
Control, pages 2719~2724, Tampa, FL, December 1989.

[17] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. Tracking and restrictability in discrete
-event dynamical systems. SIAM Journal of Control and Optimization, 1990. Submitted.

[18] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. Stability and stabilizability of discrete
event dynamical systems. Journal of ACM, 1991. To appear.

(19] P. J. Ramadge. Some tractable supervisory control problems for discrete event systems
modeled by buchi automata. IEEE Transactions on Automatic Control, 34(1):10-19,
1989. ,

[20] P. J. Ramadge and W. M. Wonham. On the sﬁpremal controllable sublanguage of a
given language. SIAM Journal of Control and Optimization, 25(3):637-650, 1097,

27

[21] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206-230, 1987.

[22] J. G. Thistle and W. M. Wonham. On the synthesis of supervisors subject to w-language
specifications. In Proceedings of 22nd Annual Conference on Information Seciences and
Systems, pages 440-444, Princeton, NJ, 1988.

[23] S. Young, D. Spanjol, and V. K. Garg. Control of discrete event systems modeled with
infinite strings. Technical report, University of Texas at Austin, Austin, Texas 78712,

1990.

A Algorithm for constructing Q(X) and A(X)

As before, let P dof (X,X,a,20,Xn) be the plant and X C X be the set of legal states.

~

The following algorithm can be used to compute Q(X) (we assume that the plant P has
finite number of states so that the algorithm terminates in finite number of steps):

Algorithm 2 1

1. Initiation step:) .
Set Q_1(X) =0,Q(X) =X, and k£ = 0.

2. Iteration step:

(a) Let Xy C X be the set of states from which Qk(X) - Qk_l(f() can be reached in
a single transition, i. e.

Xe={z€ X |3FoeLst aloz)e W(X)— Q% (X)}

Determine the set Xj by considering the SM P~ & (X,E, a7t 29, X)), where

a Yo, zs) ¥ {2z, € X | aloy21) = 22} (P! is the SM obtained by reversing
all the transitions of P), and by finding the states that can be reached from
Qi (X) — Qk-1(X) by a single transition in P71,

(b) Consiider x € Xj. If all the transitions from z lead to Qk(f(), then Q;H_l(X) =
Qp(X) U {z}. Repeat this for all z € Xj. Thus, if all the transitions from a state
r € Xy lead to states in Q;(X), then z is a strongly attractable state, i. e.

Qe (X) = W X)U{z € X | afo,2) € Qe(X) forall o € S(P)(z)}

where X(P)(z) C ¥ is the set of all the transitions that are defined in the state
z € X in P and is given by, ¥(P)(z) = {o € ¥ | a(o, 2)!}.

3. Termination step: X R
If Qpy1(X) = Qp(X), then stop and set Q(X) = Qu(X); else set £ = k + 1 and go to
step 2. .

28

Theorem A.2 Algorithm A.l computes the region of strong attraction Q(X) of the set of
legal states X € X.

Proof: The proof that the Algorithm A.1 computes Q(X) is based on the following two
facts:

Firstly, the above algorithm computes Q(X) if in step 2, Qu(X) — Q_1(X) is replaced
by Q(X) (for proof refer to Proposition 2.7 of [18]).

Figure 6: Constructing region of strong attraction

Secondly, at the end of the kth iteration, to determine the states that might be strongly
attractable, we just need to consider the states that have transitions leading into the set
Qpir(X) — Qk(X) (rather than into the set Q41(X)) in P, so that the replacement as
described above is justified (see Figure 6). In other words, we must show that at the end
of kth iteration, if all the transitions in X(P)(z) from the state z € X — Qg1 (X) lead to
the set Q441(X), then there exists ¢ € N(z) such that e(o.z) € Qs (X) — Qe(X). To
show this, we first partition ¥(P)(x) into the set ¥y (P)(z) U Ny(P)(z), the set £, (P)(z) of
transitions leading to Q4 (X) and the set Xq(P)(z) of transitions leading to Qo (X) = (X)),
Then it is enough to show that the set ¥o(x) is nonempty. Assume that it is empty; then
T € Q(Qk(f()) and therefore it belongs to the set Qk_H(Y) which is contradictory to the
fact that r € X — Q;H_l(f(). This proves the second claim. ad

Remark A.3 In order to determine the region of weak attraction A(f() of X, we replace
step 2(b) in the iteration step of the previous algorithm by the following step 2(5'):

2(0') Consider z € X;. If all the uncontrollable transitions from lead to (X)), then
Qk+1(4¥) Qk(Y U {.1,‘} 1. e.

Qper1 (X)) = U(X) U {z € X} | a(o,2) € Qu(X) for all & € T,(P)(2)},

29

where ¥, (P)(z) = L(P)(z) N Ey.
This can be tested by considering the transitions in P |g, (P with all its controllable
transitions deleted). Formally, P |s, &f (X, Y0, g, xxs Loy Xm)-

This would result in the construction of the region of weak attraction A(X) of X. Notice
that with an abuse of notation we have used Q4(X) in the algorithm for determining Ae(X).

Theorem A.4 The time complexity of Algorithm A.1 for constructing Q(X) and A(X) is
O(|Z|n), where || denotes the number of events in the event set X and n is the number of
states in P.

Proof: Assume that at the end of kth iteration, the number of transitions (of length one)
leading into the set Q41 (X) — Qi X) from X — Qp41(X) is ex. We show that step 2 of the
algorithm can be computed in O(ey) time, as follows.

Firstly, the states in the set X can be Computed in O(ex) time, for in order to determine
the states reachable from the states in the set Q41 (X) — Qk(X) by a single transition in
P~1, we need consider only the e; transitions. Secondly, since there could be at most ey
such states, the states in the set Q44 (X) can also be corpputed in O(ex) time. This is true
because to test whether a state z € X}, belongs to Q41 (X) requires only O(|X|) time which
is constant.

Since the sets Qk+1(X) — Q%(X) for each value of k are all disjoint, the transitions (of
length one) leading into them from X — Qp41(X) are also all disjoint. Hence the computa-
tional complexity of Algorithm A.1 is of order O(Y; ex) = O(e), where e is the number of
transitions in P. Since P is deterministic, e < |E|n, hence the theorem follows. Similarly, the
complexity of the algorithm for determining A(X) is also O(||n). O

This is significant improvement over the computational complexity of the algorithm given
in [2, 3], which is O(n?). Notice that our algorithm requires the construction of the SM P!
which could be nondeterministic, but has same number of transitions as P.

The above algorithm can also be used to construct the prestable and prestabilizable states
of a given invariant state set as defined in [18]. In fact, the set of prestable states and the set
of prestabilizable states with respect to a given invariant or legal set of states is the same as
Q(X) and A(X) respectively, where X denotes the set of invariant states. The computational
complexity of the algorithms provided in [18] is also quadratic in the number of states of P.

B An Equivalence Relation on ¥X* and w-Stability

A necessary condition for w-stability of a given w-language with respect to another can be
obtained in terms of an equivalence relation defined on the space ¥¥. In this appendlx we
define this relation and show its close relation to the notion of w-stability.

Definition B.1 For e1,e2 € 2%, 7 & ey if and only if there exist m,n € A such that
Hm(€1) = Hn(ez).

30

Note that for each n € NV, II,, : ¥¥ — Y% is the map such that for e € ¥ 11, (e) is the
infinite string obtained by removing the prefix of length n from e.

Theorem B.2 The relation = as defined is an equivalence relation.

Proof: We need to show that the relation & is reflexive, symmetric and transitive.

It is clear that for any vector e; € ¥¥ e, = ¢;, i.e. = is reflexive. Also, if e; = e,. then
clearly e; = ¢; for any two vectors ey, e, € Y¥ l.e. = is symmetric. It remains to show that
the relation & is transitive. Pick any e, ez, €3 € LY. We will show that e; 2 e; and ey X e,
implies e; = e3. Let m,n,p, ¢ € N be such that (e1) = Hn(ez) and I,(e;) = H,(e3). We
may have either n < p or p < n. If n < p, then Mg p-ny(e1) = Ig(es), le. e = es; if p < i,
then I,,(e1) = Uyt i—pyles), ie. €3 = eg. 0

A necessary condition for w-stability can be obtained using the equivalence relation de-
fined above. :

Proposition B.3 If plant sequential behavior L(P) is w-stable with respect to the desired
eventual behavior X, then for each e € L(P), there exists ¢/ € K such that e = ¢’

Proof: Assume L(P) is w-stable with respect to K, ie. there exist N € N such that
L(P) € USNK. Then given e € L(P), there exists n < N and ¢' € K such that e = e™¢.
Thus IT,,(¢) = ¢/, ie. e X ¢'.]

Remark B.4 Proposition B.3 gives a necessary condition for w-stablity. This condition will
be a necessary as well as sufficient condition if a weaker definition of w-stability is used. Let

the projection operator be extended to the space 2*° in the obvious manner, i.e. for any
neN, I, : 2 = 2% i5 defined to be:

IL(L) = {e€ X¥|3e € L s.t. () = e}

where £ C X% We use IL(-) to denote the operator Unea IIa(-). The plant sequential
behavior £(P) is said to be weakly w-stable with respect to the desired eventual sequential
behavior K if £L(P) C X1, (K). Thus if L(P) is weakly w-stable with respect to K, then for
every e € L(P) there exist n,m € A and ¢’ € K such that H,(e) = II.(€¢'). Tt is clear that
w-stability implies weak w-stability. It can easily be verified that L(P) is weakly w-stable
with respect to K if and only if given any € € L(P) there exists ¢/ € K such that e = ¢’

31

